附录K 】 矩形?筒仓按平面构件的】内力计算
!
》K.1 《 对称布置》的矩形筒仓》的,内力计?算
】
K.1.1—。 :矩形筒仓的内力【可简化?为平面构件》计算对?称布置的《矩形:筒仓其仓壁》。、角锥形漏斗壁(】图K.?1.:1-1)在贮料水】平压:力、法向压力、漏斗!壁自重及其附加荷】载作用下相邻壁【板水平拉力的—(图:K.:1.1-2)计【算,应符合下列规定
!
—。
!
1 【 矩形高壁浅仓【、深:仓贮料?在A、B《仓壁任意水平截面】。上其相邻仓壁的【单位水平拉》力Nha《l、Nhbl(【kN/?m):应按下列公式—。计算:
N【hal=p》hbn/《2 【 (K.1—.,1-1)
—
Nhb【l=p?han/2 — 》 (K《.1.?。1-2)
】
—2 矩《形低壁?浅仓在仓壁底边【与角锥形漏》斗壁顶?边的交接面上—贮料对?角锥形漏斗》斜,。壁板单位宽度—上的水平《。作用力?NR(k《N/m)的计—算,应符合下列》规定
?
《
: ? ? 1)当仓》。壁顶部有《。楼板时应按下式【计算:
》
NR=《2ph1h》n/5 —。 (K.1!.1-3)
!
】 2)《当仓壁顶部无楼板】时,应,按下式计算
!
NRc》ph1hn》/2 》 , (K—.1.1-4)
!
:
! : 式中hn【贮料压力的计—算高度?(m);《。。
,
《
】 》 p》h1仓?壁底部单位》宽度的贮料压—力,(kN/m)
】。
《 3》 矩形低壁浅仓】贮料在A、B仓【壁底边与其角—锥形:漏斗:壁顶:边交接面处相邻壁】板的水平拉力N【。ha、Nhb(kN!)应按下列公式计】算,
》
Nh?a=N?Rbn/2 — (】K.:1.1-5》)
Nh!b=NRan/2】 — (K.1.1-!。6)
—
—4 角锥形—漏斗A、B壁板任一!高度处相邻壁板沿其!斜长的单《位水:平拉力Sa、—Sb(k《N/m)应按下【。列公式计算》
,
《。
:
,
?
,
》。
《。 式中ph!计算:截面处贮料作用于仓!壁上:的水平压力(—kPa)《;
》
— , p】na、pnb—计算截面处》贮料作用于角—锥形漏斗A、—B壁板上的法向压力!(kPa);
【
— 【 : qa、q—b角锥漏斗A、【B壁:板单位面积自重(】kPa);》
《
,
? 【 a《n、bnA》、B仓壁《的内侧宽度(m);!
,
— — a—。n,h、bnh一—一,计算截面处角锥形漏!。斗A、B壁板的内侧!宽度(m)
【
《 5 角】锥形漏斗《A、B壁板》的计:算截面处单》位面积上《的法向压力pns】(kPa)的计算】应符合下列规定【
:
【 《 1)?应计算结构自重及】其他附加《荷,载法向压力ps【a、:psb与贮》料法向?压力pna、—pnb之《。。和;
?
【 《。。 2)贮料—的法向压力p—na、?p,n,b应按本标》准第4.2.7【条的式(4.2.】7)计算;》
!。 3—),结构自?重及其?他附加荷载产生的】法,向压力应按下—式计算?
:。
,
psa=g】cos?αb ? 【(K.1《.1-9《)
《
】 式】。中g结构自重及【其他附加荷载;【
,
》 《 ? : ? αa—A壁板?的倾:角;:
《
【 》。 —α,b,。B,壁板的倾角
】。
《 】 注计算B壁板!的psb时应采【用co?。sαa?
?
K.1—.,。2 对称布置的】矩形筒仓《的仓:壁、角锥形漏斗壁】在贮料、《筒仓结构及设备自】重等竖?。向荷载作用》下竖向力Nv—a、Nvb(图K.!1.2-1》)、斜向力Nin】c.b、N》in:c.a(《图K.1.2-【2)的?计算应符合下列【规定
【
】
】 1 仓壁—A、B底部或—角锥形漏斗壁顶【部(图K《.1.2-》1)壁板单位宽度上!的竖:向力N?。va、Nv》b,(kN/《m)应按下式计算】
,
Nv【a=Nvb=G【1/2(a+—b) ? — ,(K:.1.?2-1)
》
:。
:
, 2 — 角锥形漏》斗壁A、B壁板(图!K.1.2-2)任!一水平截《面,。单位宽度上的斜【向力Ninc—。。.a:、Nin《c.b(kN/m】),应按下列公式—计算
?
《
Nin《c.a=G2/【。2(ah+b—h)sinαa ! —(K.1《。.2-2)
【
N》in:c,.b=G2》/2(a《h+b?h)sinαb【 》 (K.1【。.2-3)
—
【 : 式中G1】仓壁底部《所,承受的全部竖向【荷载(kN)—。包括:全部:。贮料荷载、漏斗【结,构自重及附加在【漏斗上的设》备重及其他》。。荷载;
》
?
》 《 《G2计算《截面以下《漏斗壁所《承受的全部》竖向荷载(》kN)
! — :注1 浅《仓漏斗壁任意—计算截面处的斜【向力计算时图—K.:1.2-2中阴影】部分的G应按—G2计算《G2:应为计算截面处贮料!重、计?算截面以下漏斗【结构自重《及其附加设》备重;
》
! 【2 按深仓计算时】G2应为计算截面】处的贮料竖向压【力、计算截》面以:下漏斗内的贮料【重,、漏斗?结构自重及附设【在其上的《设备重等(kN)
!
K—.,。1,.3 矩》。形筒仓仓壁平—。面外的弯《。曲计算?应符合下列规—定
?
》 ?1 ?矩,形仓壁板的高—宽比小于或等于0.!5时可按单向板计算!大于0.5或小于】2.0时可》按双向板计算
【
【。 2 仓壁板周!边的支承条件应【根,据仓壁与相邻壁板、!周边构件的刚—度比确?定
《
? — 1)与相邻【构,件的相对刚度比小】于2:0%:时可简化《为简支板壁计算;】
》
《 2—)大于20》%,时可按?弹性固定板壁计算
!
!3 ?仓壁与相邻壁板、构!件相交处的不平【衡弯矩(壁板或构】件的端弯矩》差,),值的调?整(图?。K.1.1》0):应符合下列》规,定
】 【1)不平衡弯矩值】的调:整可按相邻壁—板或构件的刚度比】(,弯矩分配《系数)进行一次性弯!矩分配?;
》。
: , , : 2)不平衡!弯矩值小于》壁板、构件端弯矩】20:%时可不进行—调整并宜采用—大值
—
K.1.—4 柱支承的矩】形仓的仓壁》、角锥形漏斗—(斜)壁板的平【面内的弯曲》计算:应符合下列规—定,
?
《 1 》 低壁浅仓的仓壁与!竖向投影高度为【2/5跨长的漏斗】斜壁的平面内—。弯曲按共同受力【计算时可简化为符】。合平截?面假:定要求的《梁计算
】。
:。。 2 高壁浅!仓仓壁的《平面:内弯曲计《算,可,不,计与角锥《形,漏斗:壁的共同《受力作用按平面深梁!计算平面深梁—的弯曲应力可—按分散?配筋和集中配筋【方式简化计算
】
》 : 3 角》。锥形漏斗(斜)壁板!的平面内弯曲应【符合下列规》定
【 — :1)角?锥形漏?斗(斜)壁板—的平面内弯曲—可简化为符》合平截面《假,定要求的单独三【角形深梁计算—。其计算高度可釆用1!/2跨?长;
【
》 《2)当漏斗》壁的高度小于1/】2跨长?时应按实际高度计】算;
?
【 3)深!梁下部的应力—。值可按延《。伸到三角形》。。顶点计算并应—按应力的线性—变化规律递减至【零(图K.》1.4-1)
!
【。
《 4 》柱支承对称布置的】角锥形漏斗》在贮料、漏》斗自重及其他附加荷!载作用下其相—邻斜壁板边棱顶【部的斜向拉力应按下!式,计算
《
!
》 《式中c荷载分配系数!;
:
】 ? 《 Ni《nc.a、N—inc.b角—锥,形漏斗A、》B斜壁板顶部单位】宽,度上的斜向拉—。力(k?N/:m)
】 】注荷载分配系数c】可按图?。K.:1.4-《2选用?
】
K.1.】5 : 角锥形漏斗(斜)!。壁板平?面外弯曲的》计算应符合本—标准附录《K第K.1.—1条的规定及下【列规定
《
】 1: 壁板《的高:宽比小?于或等于0.5【时可简化《为单向?板计算大于0—.5或小《于2:.0时可按双—向板计?算;
—
: 2》 , ,壁板底边《与顶边的边宽—比小于或等于0【.25时的》梯形板可《将两斜边延长—相交:后按三角形板计【算;
》
3】 壁板底边与顶边!的边:宽比大于0.—。25:且小于0.5时可按!梯形板?计算其他条件—的壁板可《折算为矩形》。板或:圆形板计算
】
,
K.1.6【 梯形《板、三角形》板的平面外》弯曲除应符》合本标?。。准附录K《第K:.1:.,5条的规定外—均可按?当量矩形板等代【换算(图K.1【。.6)当量矩—形板:换算面积的计—算应符?合下列?规定
【
,
《
《 1? 三角形板—当,量矩形板的换—算,面,积可按下式计算【
—Aeq=(2a【。/,3)(h-a—/,6,) 【 (K.1.6】-1)
】
? 2 梯形板】当,量矩:。形板的换算面积可按!下列公式计算—
《
《。
:
【
《
K.1—.7 ? ,当,。角锥形漏《斗梯形壁板ABCD!(图K.1.7)】可,。包络在?面积为A的等边三角!形ABE内》时壁板的平面—外弯曲可按半—径为r?eq的当《。量圆形板等量换算】当量圆形板》的半径r《eq、平《面外弯?矩应按?下列:公式:计算
—
《
,
【
,
》
!
:
? 式中p【n梯形板的》。平,均法向?压力;
! M!0梯:形板的边界简支时】换算板的跨中弯【矩;:
《
:。。 M!。sEd?梯形:板的边界固定时换算!板的:。跨中弯矩;
】
! MeEd一【一梯形板的边界【固定时换算》板的支座弯矩
【
?
K.1.8 !角锥形(楔形)【漏斗三边固定的直角!三角形?壁板平?面外的弯曲(图K】.1.8)可按下】列公式计《算式中系数ηx、】ηy可按表》K.1.8》计算
》
:
》
》
!
】
《K.1?。.9 角锥形漏】。斗壁:板按各种简化等【代板转?换,后可釆用代换板【的静力计算确定【。漏斗壁?板的应力并》以此验算《壁板:平面外弯曲的承载】力
K】.1.10 仓壁!平面:外,的不平衡弯矩(图K!.,1.:10)应《按,下列公式计算
【
—
《
!
《
:。
!
? , 式中ta、—tb壁板A》、B的厚度;
】
》 :。 ,。 , ?壁板A、B》。的,跨中:弯矩;
《
— 》 M壁板的—支座负弯矩
—
》K,.1.11 壁】板的支?座、跨中各控制点的!配筋可按各》简,化方法的计算值分】别,釆用支?座、跨中《。三段控?制点:应力:的最大值配》置钢:。筋
?