5.4 】。 二阶P-△弹【性,分析与设计
】。
:
5.4.1】 二?阶,P-△弹性分析设计!方法考虑了结构在荷!载作用下产生的变形!(P-△)、结构】整体初始几》。何缺:陷(P-△》0)、节《。点刚度等对结—构和构件《变形和内《力产生的《影响进行计算分析】时可直接建立带【有初始整体》几何缺陷的》结构也可把此类【缺陷的影响用等效】水,平荷载?来代替?并应考虑假想力与设!计荷载的最不—利组合
》
】采用仅考《虑P-△效》应的二?阶弹性分析与设计】方法只考《虑了:结构:整体层面上的二阶】。效应的影响并未【涉及构件的对结构】整体变形和内—力的影响因》此,这部分的影响还应】通,过,稳定系数来进行考】虑此时的《构件计算长度—系数应?取1.?。0或其他认》可的值当结构—。无侧移影《。响时如近似》一端固接、一—。端,铰接的柱子其计算长!度,系数小于1.0
】。。
,
,
:
, 采》用本方法进行设计】时不能采用荷载效应!的组合而应采用【荷载组合进行非线性!求解:本方法作为一种【全过程?的非:线,。性分:析方法不允许进行荷!载效应的《迭,加
《
5.4.2】 :本条基?本沿用原规范第【3.:2.8?条用等效《水平荷载来代替【初始几何缺陷—的影响与原规—范的式?(3.?2.8-2)相【。。比式(5.4—.,2-1)将》二阶效应仅与框架】受水平荷《载,相关联不需要在【楼层和屋顶标高【设置虚拟水平支座】和计算其反力只【需分别计算框架【在竖向?荷载和水平》。荷载下的一阶弹性内!。力即可求得近似【的二阶弹性弯矩【该式概念清》楚、:计算简便研究表明】适用于0.1<θ】Ⅱi≤0.》25范围
—