人工制气厂站设计规范 [附条文说明] GB51208-2016 建标库

4.3  直立炉制气

4.3.1  直立炉制气用煤有单种煤、原煤、块煤、粉煤,还可能用多种煤。因此备煤工艺根据以上用煤具体情况设置相应的破碎、筛分及配煤等装置。如用两种以上煤种,需要设置配煤装置。

4.3.6  本条规定了直立炉装炉煤质量的设计要求。

    我国各直立炉煤气厂几十年的生产经验,装炉煤的坩埚膨胀序数以11/2~4、葛金指数以F~G1为好,特别是坩埚膨胀序数3~4时更适用于直立炉的生产。此时煤料行速正常、操作顺利,生产的焦炭块度大小适当,一般以25mm~50mm大小的焦炭居多。若采用黏结性好结焦性强的煤,因其膨胀指数过高,膨胀量大于炉室上部锥度扩大的幅度,使得煤与炉壁黏附,不能均匀下沉,增加人工捣炉的劳动强度,或损毁炉壁,如果强行捣炉往往会导致“脱煤”。但若采用葛金指数A、B、C型的不黏结煤,煤料入炉后所产焦块松碎,生产操作不正常,小块焦焦层容易推开排焦箱悬锤,使炭化室内煤层失去控制造成突然“脱煤”,炭化室正压无法维持,吸入空气引起爆炸,其危害程度和后果要比因膨胀指数过高形成的“脱煤”严重得多。某煤气厂就因此发生过爆炸事故,其主要原因就是煤不合要求,当时使用的主要煤种是阜新煤,其坩埚膨胀序数为11/2,葛金指数为B,颗粒小于10mm的煤占总量的80%以上。因此,连续式直立炉的装炉煤的质量指标应满足本条规定的要求。

    装炉煤的粒度是影响直立炉生产能力和劳动强度的重要因素,若直立炉采用黏结性较弱的气煤和肥气煤配合炼焦时,入炉煤是由粉煤和不完全细粉碎的煤块组成的配合料。当小于10mm煤屑大于75%时,由于粉煤较多,煤料入炉后在炉顶迅速软化、膨胀、黏结,若不采取措施,致使炉料下降不均匀,增加捣炉工作量,同时由于煤层阻力大,大部分气流从炉子长轴两端焦层高温区穿过,烃类裂解过多,煤气热值下降。如果装炉煤的粒度大一些将有利于炉料顺行,煤气通畅,提高产能。据统计,煤中小于13mm煤屑占25%比占75%时的产气率增加30%。但需注意,大于10mm的煤块过多时,容易造成炭化室内炉料粒度偏析,焦炭质量不均匀,因此规定了煤的粒度应小于50mm,其中小于10mm的含量小于75%。

    近十余年来大同矿务局扩大了直立炉使用煤种,在有蓄热室直立炉上探索出一条生产铁合金焦的新途径,选用灰分小于10%(干基)、热稳定性大于60%、粒度15mm~80mm的大同原煤(属长焰煤)炼制出了合格的高质量的铁合金焦。

4.3.7  本条规定了储煤仓、辅助煤箱、储焦仓储量的设计要求。

    (1)储煤仓储量:直立炉的储煤仓位于炉体的上方,厂房的顶层,储煤仓与厂房为共同基础。储煤仓容量以满足生产为前提,如果煤仓储量过大,会增加厂房和备煤系统的投资。随着设备先进性和可靠性的提高、维护和检修系统的完善、备煤操作系统管理的加强,煤仓的储量可以适当减小。但是如果煤仓储量过小,一旦出现下煤死角,或送煤系统出现故障将会影响直立炉的正常生产。正常情况下直立炉的上煤设备检修时间为每天8h。综合以上因素,确定储煤仓设计总容量按16h~20h计算,一般均能满足生产要求。

    (2)辅助煤箱储量:根据各厂的生产经验,一般每隔1h通过加煤阀向辅助煤箱加一次煤,1h内煤箱储量减少一半,辅助煤箱约1m多高,仍可以防止炭化室内的煤气通过煤箱外窜,保证直立炉的安全生产。因此规定辅助煤箱的总容量按2h用煤量计算。

    (3)储焦仓储量:为了直立炉操作顺利,正常生产操作中,少则6周~10周,多则20周每个炭化室定期轮换停产,空烧沉积在炉壁的石墨,通称“烧空炉”。烧垢后的直立炉与新投产的直立炉一样,投产的工序是先将空置的炭化室加满焦炭,开启排焦设备,然后才能正常加煤投入连续生产。为了满足烧空炉和新炉投产的需要,规定储焦仓总容量按一次加满四门炭化室的装焦量计算。

4.3.8  本条文规定在有条件情况下,应以单种煤或配合煤的工业炉试验数据确定各项产品指标。当考虑设计方案缺乏测定数据时,可采用条文中规定的配合煤炼制气焦的产品指标。该指标是根据各厂历年实际生产数据统计资料制定。

    影响直立炉干馏制气产品产率的因素很多,煤的挥发分、黏结性、水分、灰分、煤的粒度、熄焦蒸汽量以及生产操作管理的差异(装炉和排焦的顺畅程度)等都有关。煤气产率随着入炉煤挥发分增高而增加,但成焦率相应降低。如大同煤气厂曾实验,当入炉煤挥发分高于25%,熄焦蒸汽耗量达0.25t/t煤时,煤气产量甚至高达440m3/t煤~510m3/t煤,全焦率61.7%,所以直立炉的操作弹性较大,具有适应城市供气负荷波动的能力,适宜作为城市煤气调峰用的气源。各煤气厂一般以主要产品煤气或焦炭,来决定所选用的入炉单种煤的性质及配比,因而各厂产品产率各不相同。

4.3.9  根据连续式直立炉的生产特点,不同的煤种,不同的生产条件,干馏煤的耗热量相差较大,主要影响因素有:入炉煤的黏结性、挥发分、水分、粒度、排焦速度、熄焦蒸汽量以及生产管理的差异等。如中冶焦耐曾在大同矿务局和大连煤气二厂进行标定,两炉型均是有蓄热室的直立炉,大同矿务局用的是粒度为13mm~80mm的大同块煤生产铁合金焦,煤水分8.8%,挥发分29.86%,采用回炉煤气加热,耗热量为1409kJ/kg湿煤(水分为7%);大连煤气二厂是以生产气焦为主,使用粒度<13mm占58.9%配合煤,煤水分11.05%,挥发分38.74%,同样是回炉煤气加热,其耗热量为2137kJ/kg湿煤(水分为7%);标定结果显示,同一炉型不同煤质炼焦耗热量相差很大。煤的粒度大,透气性好,下料顺畅,有利于提高效率、降低能耗。

    又如熄焦蒸汽用量规定为0.15t/t煤~0.25t/t煤,当熄焦蒸汽量在0.15t/t煤时,称为半湿法熄焦,蒸汽量在0.25t/t煤时,称为湿法熄焦。两种熄焦方法由于熄焦蒸汽量的变化,使得直立炉的生产能力、煤干馏耗热量、煤气成分、煤气热值等都有很大差别。所以直立炉煤干馏耗热量是一项综合指标,本规范只能给出范围。

    无蓄热室直立炉的加热采用热发生炉的煤气,由于大于或等于350℃的热煤气难以测定流量,本条文的规定值是根据无蓄热室直立炉生产时,发生炉供气所耗原料量的实际数据确定,每吨煤经干馏需要耗用180kg~210kg的焦,经换算耗热量为2580kJ/kg~3010kJ/kg。

4.3.10  根据燃烧废气排放的环保要求,结合不同加热用煤气制造工艺所能达到的指标,本条分别给出了三种加热用煤气质量指标。其中发生炉热煤气是指发生炉生成的500℃左右的粗煤气,经除尘器除去粉尘和部分焦油后,直接送往用户的热发生炉煤气。发生炉冷煤气是指出炉温度500℃左右的粗煤气经冷却、洗涤、焦油雾捕除、水滴处理后的发生炉煤气,经换热器冷却后冷煤气温度约30℃~40℃。冷发生炉煤气便于管理、输送、计量和监测。回炉煤气是指直立炉自产煤气经冷却、洗涤、油雾捕除及脱硫后,循环利用的煤气。

4.3.11  本条规定了对有蓄热室的直立炉加热、交换及废气系统的设计要求。

    1  加热煤气系统:有蓄热室直立炉即可以用回炉煤气加热也可以用冷发生炉煤气加热,根据需要可布置一套或两套加热煤气系统。煤气管道上设置压力和流量自动调节装置,以稳定入炉煤气压力和流量,从而稳定入炉煤气的热值,防止炉温波动。此外由于回炉煤气含有少量萘、焦油等杂质,低温下冷凝容易堵塞管道,因此回炉煤气管应设煤气预热器,预热温度不低于45℃,并设置冷凝液排放装置。煤气管道必须始终保持正压,为了避免由于出现负压吸入空气而引起爆炸。管道上应设置低压报警信号装置,管道末端设爆破片,一旦出现爆破时以减少其损坏程度。

    2  交换系统:液压交换机占地面积小,设备简单、操作便捷,所以交换系统应采用液压交换机。液压交换机设置蓄能设施,可在停电情况下实现几个周期的交换,保证直立炉稳定生产。煤气换向装置有交换旋塞和煤气换向调节阀两种。各有优点,为了减少煤气向炭化侧走廊泄漏的机会,对一氧化碳含量较多的冷发生炉煤气(一氧化碳含量约27%)多采用煤气换向调节阀,尽管漏煤气机会增多,但泄漏的煤气直接进入烟道,回炉煤气(一氧化碳含量约15.5%)多采用漏气相对较少的交换旋塞。

    3  废气系统:废气系统中交换开闭器的阻力占总阻力的比例较大,每克服10Pa的阻力,烟囱需要加高2m,因此设计应尽量选用阻力小调节灵敏的废气交换开闭器。

4.3.12  废热锅炉的设置地点与锅炉的出力有很大关系,表1显示了同样形式的两台废热锅炉由于安装高度不一样,结果在产气量上的明显差别。

表1  废热锅炉产气量的比较

    注:废气总管标高为+8.5m处。

    废热锅炉有卧式与立式,水管式与火管式,高压与低压等种类。采用火管式废热锅炉时,应留有足够的周围场地,以便检修和清灰。

4.3.13  本条规定了炉顶荒煤气管及氨水管的设计要求。

    1  限制集气管末端与吸气管间的压差小于20Pa,有利于保证全炉各炭化室压力均匀,便于管理易于控制,减少冒烟冒火。设计一般采用增大集气管直径或增加吸气管数量的方法调整压差。

    2  煤干馏过程中的荒煤气的发生量并不均匀,集气管压力波动较大。设置集气管压力自动调节装置可保证荒煤气顺畅导出,稳定炉顶空间压力,防止冒烟冒火。

    3  制气的生产工艺复杂,影响因素较多,如因故煤气不能顺畅导出,须采取紧急放散以确保安全。

    4  当循环氨水因故较长时间停止供应时,可用工业水代替氨水冷却荒煤气,避免烧坏集气管。

    5  循环氨水的主要用途是冷却煤气和清扫集气管,本规范表4.3.13循环氨水量是总结了各厂实际生产数据而定的。

4.3.14  熄焦蒸汽用量直接影响煤气发生量,蒸汽熄焦过程中焦炭温度由950℃左右降至650℃左右,与此同时一部分蒸汽(约20%~30%)与炽热的焦炭发生水煤气反应,导致煤气中一氧化碳含量增加、煤气发生量提高、煤气热值降低、焦炭产量减少。因此蒸汽用量是调节煤气产量和质量的重要手段,根据多年来直立炉生产经验,熄焦蒸汽耗量一般控制在0.15t/t煤~0.25t/t煤左右。

    为便于控制和稳定熄焦蒸汽量,避免因充压蒸汽的开与关引起熄焦蒸汽量的波动,熄焦蒸汽管与充压蒸汽管应分别独立敷设。熄焦蒸汽总管上流量控制装置一般采用蒸汽流量计。送往每个排焦箱的支管流量一般采用流量孔板,根据生产需要稳定熄焦蒸汽耗量。

4.3.15  本条文规定了对熄焦水系统的设计要求。

    根据各厂生产经验,熄焦循环水量一般在3m3/t煤~4m3/t煤(水分为7%的煤)。为避免水中过多的粉焦堵塞熄焦喷嘴,影响熄焦效果,粉焦沉淀池设计应具有足够的容积,以保证粉焦有较好的沉淀效果,并在循环水输送系统设计中设置过滤装置。熄焦水在循环使用过程中,由于蒸发损失和排污,需定量补充新水,补充水量约为1t/t煤,熄焦补充水可以使用处理后达二级排放标准的酚氰废水或工业水。

    排焦箱水封槽补充水、水封槽清洗水计入补充水,水封式放焦阀的满流水、放焦时的落地水均应收集并进入粉焦沉淀池循环利用。

4.3.16  本条规定了对排焦系统设计的要求。

    1  排焦传动装置采用调速电机,可达到无级变速,有利于准确地控制炉内煤料行速,稳定生产。

    2  排焦箱排焦大轮以下的中箱和下箱为储焦箱,排焦大轮拨出的焦炭在这里储存,每隔2h排放一次,由运焦车或胶带运输机运往焦处理装置。为了确保因故不能按时出焦时,直立炉仍能正常生产,排焦箱储焦段的中箱和下箱总容量需按4h储焦量计算。

    3  为了减轻劳动强度、改善操作条件、减少定员,人工放焦应改成液压机械放焦。

    4  连续生产的直立炉,捣炉和放焦任何操作都会影响炉内压力的稳定,一旦二者同时操作,增加了空气进入炉内的机会,极易引起安全事故,因此在同一炭化室炉顶捣炉和炉底放焦必须错时进行,故应设联络信号,杜绝在同一炭化室上下同时操作。

4.3.17  本条文规定了直立炉工艺布置的原则。

    1  每座直立炉炭化室孔数的设置,在满足生产规模的前提下还与单排或双排布置有关,直立炉排焦是靠排焦电机和偏心轮带动拉板做往复运动,拉板的推和拉,搬动相应的排焦箱的排焦轮和排焦星齿,从而拨动焦炭完成排焦。为使排焦拉板在推和拉的动作中带动相同数量的排焦箱,以确保排焦传动系统能始终保持均衡稳定的受力条件。当采用双排布置时,每座炉的炭化室个数宜为4的倍数,可将炉孔数四等分,左排的前端与右排的尾端同时排焦,右排的前端和左排的尾端同时排焦。排焦系统受力均匀,同理若采用单排布置时每座炉的炭化室个数宜为偶数。

    2  两至三座直立炉组成一个炉组,共建在同一厂房内,构成一个生产系统,工艺管理比较方便。此时,可共用一套上煤和运焦系统、一套筛储焦系统、一套熄焦循环水系统、一套除尘系统,共用一座烟囱和一台电梯等,从而减少建设投资和运行成本。如果根据建设规模的需要在总图布置许可的情况下,也可将两个炉组即四座直立炉建在同一厂房内。

    3  每一炉组的两座炉之间应设间台,间台大小取决于工艺装置布置所占空间,如加热煤气管道的引入、煤气预热器的布置、交换机室和液压油缸布置、排焦传动装置布置等。间台负一层一般设置受焦坑和运焦皮带等。

    4  每座炉的两端设置端台,一层一般布置废气管的引出,人货两用电梯;炉顶布置荒煤气输出管和循环氨水引入管、自动化仪表室和工人休息室等。

    5  排焦箱排焦口排出的焦炭温度正常情况下约100℃~130℃左右,排焦时大量含粉焦及有害物质的水蒸气同焦炭一起喷出,污染环境,因此必须在排焦口附近设置除尘吸口,将水汽搜集经除尘管送往除尘室除尘后排放。直立炉坐落在半封闭的厂房内,炉顶表面温度约210℃~230℃,热辐射、热烘烤、加上炉内逸出的烟气,操作环境恶劣,因此必须设通风换气装置,有经验的厂家还设置了定时水雾喷淋装置。