排水工程混凝土模块砌体结构技术规程 [附条文说明] CJJ/T230-2015 建标库

3.3  模块砌体结构设计计算指标

3.3.1  施工质量控制等级是根据现行国家标准《砌体结构工程施工质量验收规范》GB50203进行划分的。表3.3.1-1、表3.3.1-2所给强度值均以模块砌体的试验结果数据分析统计为依据。试验采用400mm厚模块砌体的试件,该型模块砌体开孔率为δ=0.75,灌孔率为100%,抗压强度变异系数为0.15~0.16(该变异系数是按现行国家标准《混凝土结构设计规范》GB50010取值,试验统计所得变异系数仅相当于规范值的70%左右)。由于所设计的C30灌孔混凝土试验组其灌孔混凝土的实际抗压强度仅为设计强度的85%(相当于C25混凝土),故表中部分C30的数值为推算数值。模块砌体试验还揭示出这样一个现象,即模块开孔率(当采用中低强度等级混凝土灌孔时),其值大小对模块砌体的抗压强度影响较小。模块砌体抗压强度试验表明,砌筑砂浆的抗压强度差异对模块砌体的抗压强度的影响甚微。在排水工程砌体结构均采用水泥砂浆作为砌体的砌筑材料,为了保证砌筑砂浆有较好的和易性,一般情况下水泥砂浆的强度等级都不会低于M10,故本规程砌筑砂浆的最低强度等级定为M10。考虑到排水砌体工程不得采用空心砌体这一基本要求,如再由空心模块砌体抗压强度出发,进而导出混凝土灌孔后的模块砌体抗压强度已经没有现实意义,因此本规程砌体抗压强度均为灌孔砌体抗压强度。考虑到模块产品的自身发展变化以及设计人使用规范的习惯,方便设计人选用不同开孔率的模块砌体,本规程仍按现行行业标准《混凝土小型空心砌块建筑技术规程》JGJ/T14中灌孔砌体抗压强度模式给出模块砌体拟合强度计算公式:

    式中:fg,k——模块砌体的抗压强度标准值(MPa),按表3.3.1-1采用;

          fc,k——灌孔混凝土的抗压强度标准值(MPa),按现行国家标准《混凝土结构设计规范》GB50010采用;

          fm——模块的抗压强度代表值(MPa),MU15、MU12.5、MU10分别对应的代表值为:15、12.5和10.0(MPa);

          δ——模块的开孔率。

    该计算式直接采用了试验结果的数据分析拟合公式参数。对于试验数值以外的数据均参考现行国家标准《混凝土结构设计规范》GB50010进行了偏于安全的推算,此部分有待今后的研究试验进一步加以完善。此外模块砌体抗压试验结果揭示:模块开孔率对砌体的抗压强度的影响并非呈线性增长关系。

3.3.2  本规程采用现行行业标准《混凝土小型空心砌块建筑技术规程》JGJ/T14中的混凝土砌块墙体的抗剪强度表述。由于模块砌体自身的结构特征,从模块砌体的抗剪试验结果证实模块砌体的抗剪强度比建筑用混凝土砌块砌体的抗剪强度更高(主要是模块自身的特殊构造所决定的,试验中极限抗剪强度达到1.78MPa)。由于模块的开孔率大,现浇混凝土对砌体的抗剪强度影响的权重增加,导致模块砌体的抗剪强度增加。但考虑到模块砌体抗剪试验总体数量不多,本规程仅在现行行业标准《混凝土小型空心砌块建筑技术规程》JGJ/T14砌体抗剪公式的基础上做局部调整。关于模块砌体抗压强度分项系数γf,本规程并未采用现行国家标准《砌体结构设计规范》GB50003中有关砌体抗压强度分项系数,这是因为充分考虑模块砌体的基本构造特征所致。模块砌体强度来自模块和灌孔混凝土两部分材料的贡献,从试验统计资料反映模块砌体抗压强度变异系数小于现行国家标准《砌体结构设计规范》GB50003的数值,出于结构安全方面的考虑,本规程仍采用了规范的变异系数。在确定模块砌体抗压强度分项系数γf时,维持了《砌体结构设计规范》GBJ3-88的水平,即分项系数采用1.5。在确定模块砌体抗剪强度时,考虑到模块砌体的抗剪强度虽有较高表现,但因这类试验数据较少,故材料抗剪强度分项系数采用1.6。在确定模块砌体通齿缝弯曲抗拉强度时,考虑到模块砌体的材料构成特征,离散性较大(试验数据统计变异系数δ采用0.2),分项系数采用1.7。

3.3.4  现行国家标准《砌体结构设计规范》GB50003中,把砌体的施工质量控制等级分为A、B、C三个等级,本规程亦采用了这一施工质量控制标准,且只涉及B、C两个等级。考虑到盛水构筑物的抗渗要求较高,且多为配筋模块砌体结构,因此本规程特别明确此类构筑物模块砌体的施工质量控制等级不得低于B级。

3.3.5  关于γa在不同情况下的取值除去水泥砂浆砌筑一项其余均与砌体规范相协调。这是源于市政工程基础设施中砌体工程只能采用水泥砂浆砌筑,且所有的基础试验数据也都是水泥砂浆砌筑的数据,因此不涉及砌筑材料调整问题。对车辆荷载所占比重超过75%时砌体抗压强度值也作了调整。在大量的工程实践中,某些处于重要交通道路下方且覆土厚度较小(或只有一个道路面层的市政设施,这种情况在雨水工程中较为普遍),当车辆荷载成为主控荷载时出于安全考虑,本规程采用0.9的强度折减。

3.3.6  关于模块干码砌筑,在试验中专门做了一批干法砌筑抗压试件并进行同样的混凝土灌孔,该批试件28d的抗压强度均高于同等条件的水泥砂浆砌筑的试件的抗压强度。这与人们常规认识是不一致的,认真研究一下模块的特殊构造,这种现象还是可以解释的。首先机械化生产的模块的尺寸精度相对较高,模块上下层结合部分经特殊设计的构造形式,能够保证灌孔混凝土的浆液将这些构造间隙充填密实。由于模块的这些构造间隙比灰缝小得多,对调整上下层模块的变形十分有利,仅从模块砌体的抗压试件的实测数据看,其强度值一般偏高5%左右。这样一个结果非常具有现实意义。如采用干法砌筑不仅可以大幅度地减少现场湿作业,提高施工效率,更重要的是这种工法,能真正杜绝了模块砌筑过程的“落灰”现象,从而可以有效地保证模块砌体的内在质量,对提高模块砌体抗渗能力颇具优势。另一方面,干法砌筑可以在很大程度上降低砌筑作业对操作人员的技能要求,对进一步降低施工的技术成本,颇具潜力。不言而喻,这种模块砌体的砌筑工法,必须建立在高品质模块产品的基础之上,显然这不是短时间可以实现的目标。不同地区不同厂家提供的模块产品不尽相同,产品的内在和外观质量上会有不同程度上的差异,因此,能否采取这样一种砌筑方式,设计人应在对当地模块供货的实际情况进行充分了解基础上再做选择。鉴于目前的情况,干砌法砌筑的砌体还缺少系统的试验研究及相应的数据支持,本规程并未把干法砌筑的砌体作为规程的主要内容表述,这方面数据有待进一步总结提高、补充完善。

3.3.8  关于模块砌体的弹性模量国内外的资料出入较大,由于模块的开孔率高、灌孔率大,其弹性模量相对更接近素混凝土,故本规程在这方面比现行国家标准《砌体结构设计规范》GB50003取值偏高10%左右。关于模块砌体的泊松比本规程参考了混凝土小型砌块的有关文献给出的建议值,目的是为解决某些空间板壳结构设计的需要。小型混凝土砌块砌体泊松比大致范围0.13~0.23,且砌体通齿缝的情况也不尽相同,由于模块砌体灌孔混凝土部分的权重增加,砌体通齿缝差异随之减小,其泊松比应与混凝土更为接近。模块砌体的泊松比受诸多因素影响,很难通过少数试验得出,并且试验的难度也较大。通过一些实际工程案例看,模块砌体的泊松比对砌体结构的最终设计结果影响不大。模块砌体的线膨胀系数不同文献得出的结果不尽相同,有些有较大差别。本规程采用现行国家标准《砌体结构设计规范》GB50003中的数据。由于市政工程所涉及的砌体构筑物(如各种小室)平面尺寸一般不大,对于管(沟)渠一类的构筑物本规程从构造上(如变形缝设置间距)作了较严格的限定。