公共建筑节能设计标准 [附条文说明] GB50189-2015 建标库

4  供暖通风与空气调节

4.1  一般规定

4.1.1  强制性条文。为防止有些设计人员错误地利用设计手册中供方案设计或初步设计时估算用的单位建筑面积冷、热负荷指标,直接作为施工图设计阶段确定空调的冷、热负荷的依据,特规定此条为强制要求。用单位建筑面积冷、热负荷指标估算时,总负荷计算结果偏大,从而导致了装机容量偏大、管道直径偏大、水泵配置偏大、末端设备偏大的“四大”现象。其直接结果是初投资增高、能量消耗增加,给国家和投资人造成巨大损失。热负荷、空调冷负荷的计算应符合国家标准《民用建筑供暖通风与空气调节设计规范》GB50736-2012的有关规定,该标准中第5.2节和第7.2节分别对热负荷、空调冷负荷的计算进行了详细规定。

    需要说明的是,对于仅安装房间空气调节器的房间,通常只做负荷估算,不做空调施工图设计,所以不需进行逐项逐时的冷负荷计算。

4.1.2  严寒A区和严寒B区供暖期长,不论在降低能耗或节省运行费用方面,还是提高室内舒适度、兼顾值班供暖等方面,通常采用热水集中供暖系统更为合理。

    严寒C区和寒冷地区公共建筑的冬季供暖问题涉及很多因素,因此要结合实际工程通过具体的分析比较、优选后确定是否另设置热水集中供暖系统。

4.1.3  提倡低温供暖、高温供冷的目的:一是提高冷热源效率,二是可以充分利用天然冷热源和低品位热源,尤其在利用可再生能源的系统中优势更为明显,三是可以与辐射末端等新型末端配合使用,提高房间舒适度。本条实施的一个重要前提是分析系统设计的技术经济性。例如,对于集中供暖系统,使用锅炉作为热源的供暖系统采用低温供暖不一定能达到节能的目的;单纯提高冰蓄冷系统供水温度不一定合理,需要考虑投资和节能的综合效益。此外,低温供热或高温供冷通常会导致投资的增加,因而在方案选择阶段进行经济技术比较后确定热媒温度是十分必要的。

4.1.4  建筑通风被认为是消除室内空气污染、降低建筑能耗的最有效手段。当采用通风可以满足消除余热余湿要求时,应优先使用通风措施,可以大大降低空气处理的能耗。自然通风主要通过合理适度地改变建筑形式,利用热压和风压作用形成有组织气流,满足室内通风要求、减少能耗。复合通风系统与传统通风系统相比,最主要的区别在于通过智能化的控制与管理,在满足室内空气品质和热舒适的前提下,使一天的不同时刻或一年的不同季节交替或联合运行自然或机械通风系统以实现节能。

4.1.5  分散设置的空调装置或系统是指单一房间独立设置的蒸发冷却方式或直接膨胀式空调系统(或机组),包括为单一房间供冷的水环热泵系统或多联机空调系统。直接膨胀式与蒸发冷却式空调系统(或机组)的冷、热源的原理不同:直接膨胀式采用的是冷媒通过制冷循环而得到需要的空调冷、热源或空调冷、热风;而蒸发冷却式则主要依靠天然的干燥冷空气或天然的低温冷水来得到需要的空调冷、热源或空调冷、热风,在这一过程中没有制冷循环的过程。直接膨胀式又包括了风冷式和水冷式两类。这种分散式的系统更适宜应用在部分时间部分空间供冷的场所。

    当建筑全年供冷需求的运行时间较少时,如果采用设置冷水机组的集中供冷空调系统,会出现全年集中供冷系统设备闲置时间长的情况,导致系统的经济性较差;同理,如果建筑全年供暖需求的时间少,采用集中供暖系统也会出现类似情况。因此,如果集中供冷、供暖的经济性不好,宜采用分散式空调系统。从目前情况看:建议可以以全年供冷运行季节时间3个月(非累积小时)和年供暖运行季节时间2个月,来作为上述的时间分界线。当然,在有条件时,还可以采用全年负荷计算与分析方法,或者通过供冷与供暖的“度日数”等方法,通过经济分析来确定。分散设置的空调系统,虽然设备安装容量下的能效比低于集中设置的冷(热)水机组或供热、换热设备,但其使用灵活多变,可适应多种用途、小范围的用户需求。同时,由于它具有容易实现分户计量的优点,能对行为节能起到促进作用。

    对于既有建筑增设空调系统时,如果设置集中空调系统,在机房、管道设置方面存在较大的困难时,分散设置空调系统也是一个比较好的选择。

4.1.6  温湿度独立控制空调系统将空调区的温度和湿度的控制与处理方式分开进行,通常是由干燥的新风来负担室内的湿负荷,用高温末端来负担室内的显热负荷,因此空气除湿后无需再热升温,消除了再热能耗。同时,降温所需要的高温冷源可由多种方式获得,其冷媒温度高于常规冷却除湿联合进行时的冷媒温度要求,即使采用人工冷源,系统制冷能效比也高于常规系统,因此冷源效率得到了大幅提升。再者,夏季采用高温末端之后,末端的换热能力增大,冬季的热媒温度可明显低于常规系统,这为使用可再生能源等低品位能源作为热源提供了条件。但目前处理潜热的技术手段还有待提高,设计不当则会导致投资过高或综合节能效益不佳,无法体现温湿度独立控制系统的优势。因此,温湿度独立控制空调系统的设计,需注意解决好以下问题:

    1  除湿方式和高温冷源的选择

        1)对于我国的潮湿地区[空气含湿量高于12g/(kg·干空气)],引入的新风应进行除湿处理,达到设计要求的含湿量之后再送入房间。设计者应通过对空调区全年温湿度要求的分析,合理采用各种除湿方式。如果空调区全年允许的温、湿度变化范围较大,冷却除湿能够满足使用要求,也是可应用的除湿的方式之一。对于干燥地区,将室外新风直接引入房间(干热地区可能需要适当的降温,但不需要专门的除湿措施),即可满足房间的除湿要求。

        2)人工制取高温冷水、高温冷媒系统、蒸发冷却等方式或天然冷源(如地表水、地下水等),都可作为温湿度独立控制系统的高温冷源。因此应对建筑所在地的气候特点进行分析论证后合理采用,主要的原则是:尽可能减少人工冷源的使用。

    2  考虑全年运行工况,充分利用天然冷源

        1)由于全年室外空气参数的变化,设计采用人工冷源的系统,在过渡季节也可直接应用天然冷源或可再生能源等低品位能源。例如:在室外空气的湿球温度较低时,应采用冷却塔制取的16℃~18℃高温冷水直接供冷;与采用7℃冷水的常规系统相比,前者全年冷却塔供冷的时间远远多于后者,从而减少了冷水机组的运行时间。

        2)当冬季供热与夏季供冷采用同一个末端设备时,例如夏季采用干式风机盘管或辐射末端设备,一般冬季采用同一末端时的热水温度在30℃/40℃即可满足要求,如果有低品位可再生热源,则应在设计中充分考虑和利用。

    3  不宜采用再热方式

    温湿度独立控制空调系统的优势即为温度和湿度的控制与处理方式分开进行,因此空气处理时通常不宜采用再热升温方式,避免造成能源的浪费。在现有的温湿度独立控制系统的设备中,有采用热泵蒸发器冷却除湿后,用冷凝热再热的方式。也有采用表冷器除湿后用排风、冷却水等进行再热的措施。它们的共同特点是:再热利用的是废热,但会造成冷量的浪费。

4.1.7  温湿度要求不同的空调区不应划分在同一个空调风系统中是空调风系统设计的一个基本要求,这也是多数设计人员都能够理解和考虑到的。但在实际工程设计中,一些设计人员忽视了不同空调区在使用时间等要求上的区别,出现了把使用时间不同的空气调节区划分在同一个定风量全空气风系统中的情况,不仅给运行与调节造成困难,同时也增大了能耗,为此强调应根据使用要求来划分空调风系统。